martes, 7 de octubre de 2014
Problemas comunes en la vida cotidiana, aplicando Teorema de Pitagoras.
1. Una escalera cuya longitud es de 3 metros se encuentra apoyada contra una pared en el suelo horizontal y alcanza 2,8 m sobre esa pared vertical. La pregunta es: ¿a qué distancia está al pie de la escalera de la base de la pared?
Solución
En este caso, el dibujo que podemos hacer para interpretar la letra del problema sería algo como esto, donde nuevamente se identifica sin problemas el triángulo rectángulo.
Queda claro que la escalera cumple el rol de la hipotenusa, la altura de la pared (dato conocido) es uno de los catetos y la distancia del pie de la escalera hasta la base de la pared, es el otro cateto, precisamente la medida que se nos pide calcular y que como es una incógnita para nosotros hemos llamado “x”.
El planteo de resolución en este caso podría ser el siguiente:
a2 = b2 + c2
32 = b2 + 2.82
9 = b2 + 7.84
b2 = 9 – 7.84 = 1.16
b = √1.16 = 1.08
Respuesta final: el pie de la escalera está a 1,08 mt de la pared.
2. Una ciudad se encuentra 17 km al oeste y 8 km al norte de otra. ¿Cuál es la distancia real lineal entre las dos ciudades?
Solución
El triángulo entonces queda claramente definido y sabemos que tenemos un cateto que mide 17 km, otro que mide 8 km y que la distancia real que se nos está pidiendo es la hipotenusa del tal triángulo. Aplicamos Teorema de Pitágoras y el planteo sería así:
a2 = b2 + c2
a2 = 82 + 172 = 64 + 289 = 353
a = √353 = 18.8
Respuesta final: la distancia real entre las dos ciudades es de 18,8 km
martes, 30 de septiembre de 2014
!Vamos es muy fácil¡
Hace años, un hombre llamado Pitágoras descubrió un hecho asombroso sobre triángulos:
Si el triángulo tiene un ángulo recto (90°)...
... y pones un cuadrado sobre cada uno de sus lados, entonces...
... ¡el cuadrado más grande tiene exactamente la misma área que los otros dos cuadrados juntos!
Entonces, el cuadrado de a (a²) más el cuadrado de b (b²) es igual al cuadrado de c (c²):
a2 + b2 = c2
¿Seguro... ?
Veamos si funciona con un ejemplo. Un triángulo de lados "3,4,5" tiene un ángulo recto, así que la fórmula debería funcionar.
Veamos si las áreas son la misma:
32 + 42 = 52
Calculando obtenemos:
9 + 16 = 25
¿Por qué es útil esto?
Si sabemos las longitudes de dos lados de un triángulo con un ángulo recto, el Teorema de Pitágoras nos ayuda a encontrar la longitud del tercer lado. (¡Pero recuerda que sólo funciona en triángulos rectángulos!)
¿Cómo lo uso?
Escríbelo como una ecuación:a² + b² = c²
Si no se te fue facil aprender por medio de las anteriores explicaciones, entonces mira este video
by=betotoification
Suscribirse a:
Entradas (Atom)